Checking CFD interfaces in a multi-disciplinary
workflow with an XML/CGNS compiler

M.Poinot * E.Montreuil { E. Henaux }
ONERA, Chatillon, F-92322, France

Multi-disciplinary CFD computations are involving many kind of solvers, pre and post
processors. Some of these components may be third party software, proprietary and li-
censed software or even something which does not exist yet. The CGNS standard allows
clear and well-defined interfaces between these CFD components to be defined by the users.
The specification of such interfaces are done with XML, a text based tree representation.
The conformance of a given interface, or a given set of data produced or consumed by a
component can be achieved using the XML/CGNS compiler. An example in the area of
icing simulation is presented.

I. Introduction

As the knowledge of physics and the powerfulness of computer grow, the simulations are getting more
complex, involving multi-disciplinary codes and big amount of data. Instead of building large and all purpose
code, the assembly of code components into a single process is a more versatile way to obtain a dedicated
application. Most of these code components can be COTS! (commercial off the shelf), a proprietary code
or a new component written for a specific purpose. All components can be tied together using a steering
programming language.2 This assembly process of selected components may lead to use a component for
which only the interface is known, not the inside. Such an approach is also known as the black-box approach.
You have knowledge of the public information provided by the component, but you don’t know how it is
done. You have to trust the black-boz, and eventually to test it to make sure it conforms to your application
requirements.

In order to select components and to check their interfaces, we are using standards and we have developed
a tool to check actual interoperability of components. The public specification of these interfaces is made
using a textual representation of the CGNS3® standard structures. The CGNS standard is a good candidate
for the CFD workflow interface definitions.® Each component can specialize its own specification, as far as
this latter is a subset of the original CGNS SIDS? specification.” The process of submitting, reviewing and
publishing the per-component specifications is made with all the participants of the CFD system.

We are presenting here an approach already used in other computer science areas, such as database
systems or network systems.® A compliance check tool, that could be called a CGNS compiler, has been
realized to achieve the verification of input/output data of a set of CFD workflow components. The compiler
takes an XML? file as input, and produces a diagnostic and an HDF!? binary file as output. The XML file
is the textual representation of a CGNS tree, the HDF file is the actual binary value of this file.

We illustrate the use of this compiler with the example of a simulation workflow in the area of icing
research.!! The codes are developed and used by the teams working on the project. The use of the XML tree
description for the input/output for every component has improved their work in terms of better definition
of components. The use of the generated HDF files has increase the reception tests capabilities.

*Software Engineer, Computational Fluid Dynamics and Aeroacoustics, Member ATAA

fResearch Scientist, Physics Instrumentation and Sensing, Member ATAA

fStudent, Computational Fluid Dynamics and Aeroacoustics, -

aSIDS stands for ”Standard Interface Data Structure”, it is the main CGNS document, already an AIAA recommended
practice referenced ATAA-R-101A and in the process of being an ISO standard

1of 11

American Institute of Aeronautics and Astronautics

II. The CFD workflow

A. Multi-components simulations

The simulations are now involving many solvers. The architecture of these systems are sequential or parallel
executions of simulation codes, the control and the data exchange between codes are performed by dedicated
applications mostly written with the so-called steering languages. An industrial or a research team does not
write the whole system, but rather built a system re-using existing components. The steering application
(see fig. 1) controls the calls to the components and give then the relevant parameters, insure data transfers
when required or performs some data tuning (i.e. dimensional to non-dimensional data).

Building an application is a matter of assembly of components in order to obtain the expected algorithm.
The assembly team may not be able to check all component contents but it should control the whole system
behavior. And this behavior strongly depends on the consistency of the component interface.

This raises new issues, such as: Is my output readable by your code? or How can I test your code which
still is in development? or How can we foresee extensions for the next project phase? And many others,
because the user is not the owner of the whole system. The user must take into account the modification
that eventually will occur because software components are always evolving. This is especially true in a
research environment, which follows the leading edge of both physics and computer science. The component
interface may not be well defined, or will change as the knowledge of the required input and output of this
black-box grows.

Now your system is getting more robust. A component can be replaced by another one (for example a
version of a software can be replaced by a new version), or a prototype can be used at development time and
then replaced by an actual code. You are able to change these components if they have the same interface.
This is not that easy, because in numerical simulation the whole system behavior (i.e. the global algorithm)
is tightly bound to the components behaviors (i.e. the local algorithms). However, for some specific black-
boxes with well defined interfaces, such a component exchange could be done. For example you can change
boxes related to some mesh related modifications (i.e. deformation, remeshing, interpolation...) or tracking
convergence, visualization. We actually have much more complex components, in that case we do require to
have knowledge of the internal algorithms of the components. Every time we detect an hidden information
which has a strong impact on the computation, we require to make it public when this is possible.

Figure 1. Multi-disciplinary simulation involving components

Taking apart the problem of defining algorithm and their dependencies® ,we focus on the interface in
terms of a consistency set of data input and output.

b Algorithms can be defined using some finite state machine (FSM). Most of the time, components are documented with
their API (application Programming Interface) which does not contains the behavior automata (FSM), at least described in a
standard or a formal form.

2 of 11

American Institute of Aeronautics and Astronautics

B. Components and CGNS interfaces

The interoperability between black-boxes is achieved through standard interfaces for the CFD simulation
components. One may have no knowledge of how a computation is done, but rather what kind of computation
is done, this introduces the concept of interface. This eventually leads to more and more modularity of the
system, you build your simulation workflow by looking at interfaces. Some systems, such as CORBA'2 or
even MPI, have clear and powerful means to define interfaces, but they are defining low level protocol for
control and data exchange. We have to define more precisely our data, because the meaning of the data
in a simulation is the glue that makes components a system when connected to each other. The more the
interface is specialized, the better it is for the user. A specific interface allows a very high level of semantic
embedded in the definition to be obtained by the user. For example, if your component declares to output
the TurbulentEnergyKinetic, you immediately have a more precise knowledge of the data. The interface
should take into account the context of the simulation.

In the area of CFD, we already have the CGNS specification. Even if this specification is not complete
enough to insure all data description in a multi-physics simulation, it is extensible and immediately usable.

Figure 2. CGNS mapping of an interface in CFD workflow

Any kind of component should have a CGNS interface, as soon as this component can be selected for a
CFD workflow. It means that if this component is a good candidate to be used in a CFD simulation, then
there is at least a minimal CGNS interface for it. As shown in figure 2, a component can provide only 10%
of the CGNS interface.

C. Conformance to standard

Once a standard, or a set of standards have been defined, all black-boxes can be selected, designed or adapted
to fit the requirements. Then a new step comes in our assembly process: we have to check the conformance
of the black boxes with respect to the standards. In the case of third party software, you can trust software
providers because they all use the so-called mid-level library which enforces the checks. This actually is the
only way to read or write a CGNS binary file and to check the correctness of a data structure. If the library
calls do not complain at the creation time, then the user can believe its tree is correct.

The next CGNS version will use HDF5 storage layer, the software providers can now directly use this
public library, and some could make some non-CGNS-compliant extensions or modifications. We require
a mean to check a CGNS interface. Such a mean should be composed of a language for the interface
specification and tools® to check the interface conformance with respect to the SIDS.

We already have a grammar which allows to define a CGNS data structure and a CGNS data value.
However this grammar is almost dedicated to SIDS and we cannot accept to make some new tools using
this proprietary grammar and at the same time claim we have an Open System. We had to select a textual
representation that could be understood and modifiable by all CFD users. We decided to enter into the
XML world, which publishes open standards and which provides many tools and documentation.

In terms of standard compliance, the fact of being CGNS compliant, for a component, can lead to a label.
So far, there is no CGNS compliant label, but certainly this is a task that should be done by consensual
groups such as the CGNS steering Committee.

“The more we have compliance tools, the better it is.

3of 11

American Institute of Aeronautics and Astronautics

III. Interface specification and conformance check

A. The relaxNG grammar and SIDS

The selected grammar is Relaz NG.'3 The difference between the existing SIDS grammar (a kind of Math-
ematica software programming dialect), and the translation to Relax NG is not very important. It is close
to a readable grammar and can be easily understood and modified by non-software aware scientists.

We have redefined all the CGNS data structure definitions with Relaz NG. We tried to be as close as
possible to the original SIDS grammar. For example, all type names are the same, node ordering, even if
non significant, has been kept. The grammar files have been split in parts in order to be inserted in the SIDS
document source. There is a one-to-one relationship between the SIDS/RelaxNG document which describe
the data structure, and the actual grammar files used by the XML tools. This improves maintenance and
consistency.

We had to make some adds and changes to the original SIDS. The actual use of the grammar with
tools has imposed some modifications such as defining attributes instead of some nodes used for the node
qualification. We have now the Name attribute. Many SIDS node names are reserved or recommended, but
there was no formal? way in SIDS to define a name mandatory or optional. Some missing types were added,
such as DiffusionModel t instead of "int[1+...+IndexDimension]" in SIDS.

The example below shows the ZoneIterativeData sub-tree, which describes the time-dependent data
associated to a zone in a CGNS tree. The syntax indicates if the element has a 0:1 cardinality (with ”?”)
or a 0:N (with ”*”). The ”"&” sign is used to declare a non-ordered list of elements. We do not go into
details, the Relax NG grammar has been chose because it is public and easy to understand. We developed
and checked the grammar using public java tools such as Jing or Trang.

ZonelterativeData_t = element ZonelterativeData_t
{
attribute Name { xsd:string "ZoneStepPointers" 1},
attribute NumberOfSteps { xsd:unsignedInt },
attribute DataClass { DataClass_t },
RigidGridMotionPointers_t 7
ArbitraryGridMotionPointers_t 7
GridCoordinatesPointers_t ?
FlowSolutionsPointers_t 7
DataArray_t *
Descriptor_t *
DimensionalUnits_t 7
UserDefinedData_t *

R A

There are two parts in the declaration, the attributes and the elements. An attribute is a value which
qualifies the current node, the elements are sub-trees. Some attributes are duplicated in the sub-trees of a
given node. For example, a DataArray element has its own Dimension attribute, which should be the same
as its ancestor Dimension attribute.

attribute IndexDimension { DimensionInteger_t } ,

& DataArray_t * # Dimension=IndexDimension
DimensionValues=Constraint (Rind,VertexSize)

We decided to indicate such attribute dependencies in the comments. This is a lack of the grammar, we
cannot define all constraints we would like to have. The use of tools will allow us to check such consistency.

4Tt is done providing a textual comment attached to the node definition.

4 0of 11

American Institute of Aeronautics and Astronautics

B. Tree description

A tree instance is a value of a CGNS tree. In other word, it is a set of values, organized into a tree, which
structure is compliant to the CGNS tree definition. This description is an ASCII file in XML syntax. Here’s
an short example of a tree instance:

<CGNSTree CGNSLibraryVersion="2.3" >
<CGNSBase_t Name="D02=Rotor-7A"
CellDimension="3" PhysicalDimension="3"
SimulationType="UserDefined" >
<Zone_t Name="Blade-1"
CellDimension="3" PhysicalDimension="3"
ZoneType="Structured" VertexSize="[3,5,7]" CellSize="[2,4,6]"
VertexSizeBoundary="[0,0,0]">
<GridCoordinates_t Name="GridCoordinates" IndexDimension="3" VertexSize="[3,5,7]">
<DataArray_t Name="CoordinateX"
DataType="RealDouble" Dimension="3"
DimensionValues="[3,5,7]" />
</GridCoordinates_t>
</Zone_t>
</CGNSBase_t>
</CGNSTree>

You can find the attributes and elements declared in the SIDS/RelaxNG. An element starts with a tag
with its type name, it has attributes and the sub-trees are enclosed between the start tag and the end tag.

A textual representation of a CGNS tree allow the creation of empty patterns, which can be generated by
small and easy to write scripts. These patterns are used for test set generation, for documentation guidelines
or examples, or for a partial check of the compliance.

With XML comes the problem of very large data sets®. We allow the use of ASCII data sets, but as soon
as the data set exceeds a fixed size we use an URL to reference an actual binary file. The idea of the SIDS is
more in terms of data structure, in terms of a global consistency of a set of data. There is no real constraints
on the data contents, except the size and the type of this data.

C. Grammar specialization

The base CGNS grammar can be specialized by the users. The Relax NG definitions dedicated to the
component is an input of the CGNS/XML compiler. A component may provide only 75% of the CGNS
interface. We have to modify the constraints on this interface in order to make sure that input and/or
output are compliant to these 75%. In a workflow, you may have a Structured solver for the CFD and
an Unstructured solver for the CSM. However, CGNS allows clever data definitions, that can either be
understood by Structured and Unstructured. This is the goal of the grammar specialization, we want to
make sure that component interfaces are tuned for our application.

During the grammar specification phase, a new grammar specialization file can be set as input. This
specialization file is a configuration file set by the administrator, or by the tool maintainer. The grammar
specialization actually is mandatory in the case of a component interface check. We have to restrict the
controls of the data input/output grammar to subset of the CGNS SIDS.

There are some examples of simple restrictions:

e A fixed name for a node

ZonelterativeData_t = element ZonelterativeData_t

{

attribute Name { xsd:string "ZoneStepPointers" },

¢The current version of SIDS doesn’t address this problem. The examples of large CGNS data, such as Coordinates or
FlowSolution are given using a loop syntax without real data.

5 of 11

American Institute of Aeronautics and Astronautics

e A non-CGNS-mandatory node suppression (in this example DataClass is a comment.)

ZonelterativeData_t = element ZonelterativeData_t

{

attribute DataClass { DataClass_t },

e A restricted enumerate
DataClass_t = "Dimensional"

We often use names for data qualification. The most common use is a sequence number such as
FlowSolution#5000, indicating an iteration number for example. The syntaxic pass of the compiler can
check such a name syntax.

D. Semantics checks

The compiler analysis of the input data goes through several steps. One of the two important stages are
the syntazic and the semantic stages. The first one if performed when the compiler checks the structure of
the tree, regardless of the actual values of variables. For example, it checks that Structured zone cannot
contain a Elements node, or that a mandatory ReferenceState node is present.

The second stage, the semantic stage, checks the values and the consistency of these values in the whole
data specification. For example it checks that a PointRange defining indices of a boundary condition has
correct values with respect to the owner zone dimensions.

Some of semantic checks can be added or modified by the user. The schematron'* XML system has been
chosen for the semantic rules specification. Other semantic checks are performed by the compiler itself, using
Python programming language.

The user cannot declare his own types in the grammar, because the specialized grammar should be a
subset of SIDS, not an extension. For example, we need to declare a DropletClass node. We have to use
the UserDefinedData node, we make sure the node has the expected structure and attributes during the
semantic stage. This is an example of a schematron rule, used to enforce the presence of specific data in
every flow solution (with the error diagnostic):

<sch:pattern name="Check FlowSolution">
<sch:rule context="FlowSolution_t">
<sch:assert test="DataArray_t[@Name=’VelocityX’]" diagnostics="E050" />
<sch:assert test="DataArray_t[@Name=’VelocityY’]" diagnostics="E051" />
<sch:assert test="DataArray_t[@Name=’VelocityZ’]" diagnostics="E052" />

<sch:diagnostic id="E050">
FlowSolution_t {<sch:value-of select="@Name" />} must contain
a DataArray_t with name "VelocityX"

</sch:diagnostic>

Another example, where we want a specific BC to contain both Neumann and Dirichlet data sets.

<sch:rule context="BCDataSet_t">
<sch:assert test="((@Name=’IcingWallData’)
and (count(DirichletData_t) = 1)
and (count (NeumannData_t) = 1))
or (@Name!=’IcingWallData’)"
diagnostics="E031"/>
</sch:rule>

Many complex checks can be performed during the semantic stage. The schematron rules language is a
bit difficult to use, but it is standard. We avoid to perform very large semantic checks, we think this is more
related to the applications. For example, we didn’t want to check if numerical choices in ReferenceState
are relevant regarding the GorverningEquation definitions.

6 of 11

American Institute of Aeronautics and Astronautics

E. Use of the compiler

The C5 compiler is included in the pyCCCCC Python'® package. It uses the libzmi2'® XML library, and is
released as Open Source. We call this tool a compiler because it reads a textual language and it generates a
binary representation of the input.

bc‘\
AT @ N
SQQ,G\%‘,&(\\‘\
N

e

\
D
\\%*\“\\\6\@
NCaCey

&

Figure 3. The C5 XML/CGNS compiler files

The usual input is an ASCII representation of a CGNS tree (an XML file), the output is a CGNS binary
file (an HDF5 file). The figure 3 shows the input/output process of the compiler.

The compiler checks that an ASCII data definition is compliant to a grammar, it also produces binary
code in the case of a correct data definition. The user obtains a CGNS binary file which is guaranteed to be
CGNS compliant, moreover, this file is compliant to the user restriction of SIDS.

In the case of large data set, the data is located using an URL to the actual binary file containing the
data. This data is read by C5, several binary formats are accepted.

An HDFS5 file can be also used as input, for example to get back an XML representation of an existing
CGNS tree. But in the case of a non-CGNS compliant file, the performed checks are less robust than using
the XML file. If you want to check an HDF5 file, you have to first generate the XML without any check,
then you reparse this XML output asking for more checks.

There is a pre-processing phase, using XSL filters. The pre-processing is used to set default values, to
propagate duplicated attributes (such as IndexDimension), to force link creation. This XSL tasks are not
subject to standardization in the CGNS context, it is a C5 function.

IV. An application in physics

A. Icing simulation process

Icing is due to caption and freezing of super-cooled water droplets (liquid water droplets at a temperature
below the dew point) contained in some clouds which are flown through by aircrafts. When the super-cooled
droplets hit the surface of the aircraft, this super- cooled state is broken: the droplets freeze more or less
rapidly creating rime or glaze ice depending on temperature values. Without any protection, ice accretion
can induce hard aerodynamic penalty by modifying the aerodynamic shape!” of the wing (for example, horn
shape) or can induce extinction of the engine by ingesting blocks of ice in the air entry (often the case for
rotorcraft engines). Each year, it causes several incidents or accidents.'®

The actual challenge is to provide CFD tools!® which are able to evaluate the penalty due to 3D ice
accretion. Ice accretion depends on many parameters such as air quantities (velocity, temperature, pressure)
and water quantities (droplet velocity, droplet temperature, liquid water content and median volumic diam-
eter). It also depends on wall quantities such as friction direction, wall heat flux and connective exchange
coefficient, and water catch efficiency coefficient. These parameters are computed from an ice workflow
composed by three kinds of components that will be briefly presented in the next section.

These data structure and definition can be found in the CGNS standard.

7 of 11

American Institute of Aeronautics and Astronautics

B. Components and interfaces

Three components can be identified, and there is a fourth component, the control component which actually
drives the simulation. The schema below gives an outline of the components and the interface relationships.

\C\(\i%,e‘
60

Figure 4. The icing simulation components

The first entry point of this ice workflow is obviously the aerodynamic solver. This component computes
air fields such as density, velocity, temperature and pressure. It also computes some wall quantities such as
friction direction (for water runback), heat flux and convective exchange coefficient.

The second entry point is the trajectory solver. Generally, the eulerian approach is preferred than
the lagrangian one when involving 3D ice accretion. So, this component requires air quantities in the 3D
computational domain, given by the aerodynamic solver. It computes water droplet fields such as water
droplet velocity and water droplet temperature, and also computes water catch efficiency coefficient.

The last entry point is the ice solver which corresponds to a thermodynamic balance?? (mass and energy)
at the icing wall. This component requires water droplet quantities given by the previous solver, but also
wall quantities computed by the first solver. As a result, the thermodynamic solver computes an ice growth
rate.

C. The ice flow data specification

The specification is an agreement between actors of the ice flow: the component providers/builders and the
component users.

Examples of specific requirements of the ice flow are: use of SI units, constraints on structured and
unstructured meshes (such as hexa elements only), mandatory data (such as Droplet Velocity, FrictionDirec-
tion...). The generalized connectivity is required, that is the more general connectivity definition in CGNS
and this allow the use by all involved solvers.

The grammar specification is built from the original relaxtNG grammar for CGNS, it adds restrictions
on existing rules. For example, the GridLocation_t attribute, which defines the location of the values in
the associated data, can be set to force cell centered values for 3D data and to face values for 2D. The
requirement leads to the following grammar lines:

GridLocation3D_t = "CellCenter"
GridLocation2D_t = "FaceCenter"|"IFaceCenter"|"JFaceCenter" |"KFaceCenter"

Some data also have required dimensional units and dimensional exponents. The grammar enforces these
definitions.
D. Example of a transient tree

We give here a transient data tree example. This tree is a kind of shuttle tree transferred from one component
to the next component. Some of this data can be archived for a subsequent simulation. The tree is compliant
to the ice flow interfaces grammar.

8 of 11

American Institute of Aeronautics and Astronautics

The CGNS compiler enforces two kind of checks. The first one is the compliance of send/receive data to
the CGNS standard and the second is the compliance to the ice flow data specification. The tree examplel
in figure 5 shows a CGNS tree containing the solutions at the predictor stage. The corrector stage is
the next stage, it will be added to the data tree with an extra structure, so-called ZoneIterativeData in
CGNS. This extra structure will point to the data with respect to the step to which they belong. The
DimensionalExponents node is defined with DimensionalUnits for every value. Even if it looks obvious to
give units and exponents to a Density, no ambiguity is left and this CGNS capability is mandatory in our
specification.

Di mensi onal Units

FI owEquat i onSet

Ref erenceState

Tunnel #01

[+ Predictor: Dropl et d ass#01

= Predi ctor: Gaz

[—l=7 Pressure

—=7 Di mensi onal Exponent s

MassExponent : 1.0
Ti meExponent : -2.0

Tenper at ur eExponent : 0.0
Angl eExponent : 0.0
Lengt hExponent : -1.0

Tenperature

Tur bul ent Scal ar 1

Tur bul ent Scal ar 2

Vel oci tyX

Vel ocityY

Vel ocityZz

Tur bul ent Scal ars_1

Tur bul ent Scal ars_2

#Hp GidCoordi nat es

[+Hp ZoneBC

[#Hp ZoneGri dConnectivity

[+ Tunnel #02

Figure 5. A transient tree example

The CGNS compiler is also used to produce data test sets. The test set is first written in XML, using
open source XML tools. The compiler reads the textual data representation and produces a CGNS binary
file. All users can edit and modify ASCII XML files, and the compiler is the powerful support to insure a
correct data production.

E. Actual impact on team work

The specification of component interface is made at the beginning of the project, even if some extensions
or modifications could be done later. Once the interfaces had been defined, the compiler is tuned for these
grammars and released to working teams. The users can perform checks and binary generation using the
compiler, they cannot modify the grammars anymore.

The benefits of the XML/CGNS compiler involve both the process of the team work, but also the quality
of the simulation itself.

The first benefit is the specification phase. The whole simulation system is thought in terms of an
architecture, a components and interface definitions. The interface identification and specification help the

fThe screenshot comes from the cgt display tool, it is included in the pyCCCCC release.

9 of 11

American Institute of Aeronautics and Astronautics

understanding of dependencies between the solvers, from the data points of view but also from the time (life
cycle) point of view. For example, we had to define a DropletClass which sets some droplet type for the
simulation. For each droplet class we have a FlowSolution. Such a need was found during the specification
phase, some solvers did require the droplet class, some other didn’t. However, we decided to extend the
CGNS tree specification with this DropletClass, in the case we had to change a component that would
require this informations8.

The second benefit is the capability to define the test set without knowledge of the actual component
implementations. Actually, this is a full V-cycle process. Some sets of CGNS trees have been created, using
fortran programs, python scripts or even modifying the XML textual representation of files and checking
them using C5 to make sure our modifications were CGNS compliant. The test set has been made public
to the project teams. They use the files for several purposes:

e Examples for specifying or coding their software component.
e Tests files as input or output verification for their component.
e Data files for feeding component stubs.

Another benefit is the capability to define prototype components. Some new ideas can be tested quickly
without breaking the whole system. We had to think to extensions, and the whole simulation process was
thought in terms of software system as well as a simulation system. For example, we had to add a special
boundary condition, the BC data had to be either input and output. Such a life cycle is not defined in the
standard. We have defined our own life cycle for these boundary conditions, reading the our BC data can
be performed by all CGNS compliant tools.

- Tunnel#01

[» Predictor:DropletClass#01

[» Predictor.Gaz

[» GridCoordinates

=7 ZoneBC

[Inlet

—== Wall#01

[» IcingWallData:DropletClass#01
—}=2 IcingWallData:Gaz

[» DirichletData

=I=% NeumannData

[» CoefConvectiveExchange
I, SkinFrictionX

[» SkinFrictionY

[» SkinFrictionZ

#Hp IcingwallData:lce

+-{» PointList

L L P [RTPoVeN

Figure 6. BC data as input/output values

The SkinFriction vector usually is a value for CGNS flow solutions. We put this vector in the BC data,
as shown in figure 6.

8We cannot extend the specification to have the perfect interface, allowing all COTS to be connected to our simulation. In
that case, the expert have found an obvious dependency which was hidden. The process of defining an interface has show the
need for this hidden dependency.

10 of 11

American Institute of Aeronautics and Astronautics

V. Conclusions

The use of the compiler has improved the interface definition and thus the modularity and the interop-
erability of the simulation workflow. Scientists and engineers can focus on the global system behavior, that
is the gist of the actual simulation: the physics. The architecture can be delegated to third party software.

The goal now is to spread this use of the CGNS standard, the use of the compiler itself, and to find
agreement between teams working on simulations in the same area, such as icing. We will propose the XML
mapping to the CGNS Steering Committee, with the idea of having a good context for creating a CGNS
compliant label.

The XML/CGNS compiler will be released as an Open Source tool at the end of year 2004.

In Memoriam Robert Henry, ONERA/DMPH/EAG

References

1Korel, B., “Black-Box Understanding of COTS Components,” Proceedings of the 7th International Workshop on Program
Comprehension, IEEE Computer Society, 1999, p. 92.

2Parker, S., Johnson, C., and Beazley, D., “Computational Steering Software Systems and Strategies,” IEEE Computa-
tional Science & Engineering, Vol. 4, No. 4, /1997, pp. 50-59.

3Legensky, S., Edwards, D., Bush, R., Poirier, D., Rumsey, C., Cosner, R., and Towne, C., “CFD General Notation System
(CGNS): Status and Future Directions,” Aiaa paper 2002-0752, Jan. 2002.

4Poirier, D., Allmaras, S., McCarthy, D., Smith, M., , and Enomoto, F., “The CGNS System,” Aiaa paper 98-3007, 1998.

5Rumsey, C., Poirier, D., Bush, R., and Towne, C., “A User’s Guide to CGNS,” Nasa/tm-2001-211236, Oct. 2001.

6Poinot, M., Rumsey, C., and Mani, M., “Impact of CGNS on CFD workflow,” Aiaa paper 2004-2142, 2004.

"CGNSTeam, “The CFD General Notation System, Standard Interface Data Structures,” Aiaa r-101-2002, Dec. 2002.

8Meyers, B. and Chastek, G., “The Use of ASN.1 and XDR for Data Representation in Real-time Distributed Systems,”
Carnegie mellon univ., software engineering institute, technical report cmu/sei-93-tr-10, Oct. 1993.

9W3C, “XML, WWW home page,” http://www.w3.org/XML/.

IONCSA, HDF5, WWW home page, http://hdf.ncsa.uiuc.edu/HDF5.

U'Wright, W., Gent, R., and Gufond, D., “DRA/NASA/ONERA Collaboration on Icing Research - part IT : Prediction of
Airfoil ice Accretion,” Tech. rep., NASA Technical Report, NASA-CR-202349, 1997.

12Vinoski, S., “CORBA: integrating diverse applications within distributed heterogeneous environments,” IEEE Commu-
nications Magazine, Vol. 14, No. 2, 1997.

13Clark, J., “RelaxNG, WWW home page,” http://www.relaxng.org/.

14 «Schematron, WWW page,” http://www.schematron.com/.

15yan Rossum, G., “Python, WWW home page,” http://www.python.org.

16Veillard, D., “The XML C parser and toolkit of Gnome, WWW home page,” http://www.xmlsoft.org.

7Henry, R., Guffond, D., Aschettino, S., and Duprat, G., “Characterization of Ice Roughness and Influence on Aerodynamic
Performance of Simulated ice Shapes,” Tech. rep., ATAA Paper 2001-0092, Reno, 2001.

18Kind, R., “Icing frost and aircraft flight,” Canadian Aeronautics and Space Journal, Vol. 4, 1998, pp. 110-118.

19Beaugendre, H., A PDE-Based 3D Approach to In-Flight Ice Accretion, Ph.D. thesis, McGill University, Montreal,
Quebec, 2003.

20Messinger, B., “Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed,” Journal of the
Aeronautical Sciences, Vol. 20, 1953, pp. 29-42.

11 of 11

American Institute of Aeronautics and Astronautics

